本文编写于 1415 天前,最后修改于 718 天前,其中某些信息可能已经过时。
E题 Social Distancing
题解
根据上述性质,可以将求切比雪夫不等式最小值转化为求曼哈顿距离的最小值。
二维矩阵求曼哈顿距离可以根据前缀和来减少时间复杂度,如果该点非病人,标记为1,代表该点权值为1;反之则标记为-1,后期求前缀和时该点权值定为0;然后分别沿四个方向求前缀和,取最小值即为每个点的最小曼哈顿距离。
最后根据最小曼哈顿距离dfs进行搜索即可得出答案。
代码
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
char a[505][505]={0};
int ans1[505][505]={0};
int dis[505][505]={0};
int sx,sy,ex,ey;
struct node
{
int x,y,val;
};
int dx[]={0,1,-1,0,0};
int dy[]={0,0,0,1,-1};
int n,m;
int ans=-1;
int dfs(int x,int y,int val)
{
if(ans>=val)
return 0;
if(x==ex&&y==ey)
{
ans=max(ans,val);
return 0;
}
for(int i=1;i<=4;i++)
{
int xx=x+dx[i],yy=y+dy[i];
if(xx<1||xx>n||yy<1||yy>m)
continue;
if(a[xx][yy]=='#')
continue;
int val1=min(val,dis[xx][yy]);
if(ans1[xx][yy]>=val1)
continue;
ans1[xx][yy]=val1;
dfs(xx,yy,val1);
}
return 0;
}
int mp[1050][1050]={0};
int mp_sum1[1050][1050]={0};
int mp_sum2[1050][1050]={0};
int mp_sum3[1050][1050]={0};
int mp_sum4[1050][1050]={0};
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%s",a[i]+1);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
dis[i][j]=inf;
}
}
for(int i=0;i<1050;i++)
for(int j=0;j<1050;j++)
mp_sum1[i][j]=mp_sum2[i][j]=mp_sum3[i][j]=mp_sum4[i][j]=inf;
int sum=0;
for(int i=0;i<=n+1;i++)
{
int j=0;
mp[i+j][i-j+500]=inf;
j=m+1;
mp[i+j][i-j+500]=inf;
}
for(int j=0;j<=m+1;j++)
{
int i=0;
mp[i+j][i-j+500]=inf;
i=n+1;
mp[i+j][i-j+500]=inf;
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(a[i][j]=='*')
{
sum++;
mp[i+j][i-j+500]=-1;
}
else
{
mp[i+j][i-j+500]=1;
}
if(a[i][j]=='S')
sx=i,sy=j;
if(a[i][j]=='E')
ex=i,ey=j;
}
}
for(int i=1;i<1050;i++)
{
for(int j=1;j<1050;j++)
{
if(mp[i][j]==-1)
mp_sum1[i][j]=0;
else
mp_sum1[i][j]=min(mp_sum1[i][j],min(mp_sum1[i-1][j],mp_sum1[i][j-1])+mp[i][j]);
}
}
for(int i=1;i<1050;i++)
{
for(int j=1049;j>=1;j--)
{
if(mp[i][j]==-1)
mp_sum2[i][j]=0;
else
mp_sum2[i][j]=min(mp_sum2[i][j],min(mp_sum2[i-1][j],mp_sum2[i][j+1])+mp[i][j]);
}
}
for(int i=1049;i>=1;i--)
{
for(int j=1;j<1050;j++)
{
if(mp[i][j]==-1)
mp_sum3[i][j]=0;
else
mp_sum3[i][j]=min(mp_sum3[i][j],min(mp_sum3[i+1][j],mp_sum3[i][j-1])+mp[i][j]);
}
}
for(int i=1049;i>=1;i--)
{
for(int j=1049;j>=1;j--)
{
if(mp[i][j]==-1)
mp_sum4[i][j]=0;
else
mp_sum4[i][j]=min(mp_sum4[i][j],min(mp_sum4[i+1][j],mp_sum4[i][j+1])+mp[i][j]);
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int xx=i+j,yy=i-j+500;
dis[i][j]=min(min(mp_sum1[xx][yy],mp_sum2[xx][yy]),min(mp_sum3[xx][yy],mp_sum4[xx][yy]));
}
}
dfs(sx,sy,dis[sx][sy]);
if(ans!=-1&&sum==0)
{
printf("safe\n");
return 0;
}
printf("%d\n",ans);
}